Diversity-Oriented Synthesis of Heterocycles and Macrocycles by Controlled Reactions of Oxetanes with $\boldsymbol{\alpha}$-Iminocarbenes

Alejandro Guarnieri-Ibáñez, ${ }^{a}$ Florian Medina, ${ }^{a}$ Céline Besnard, ${ }^{b}$ Sarah L. Kidd, ${ }^{c}$ David R. Spring, ${ }^{c}$ Jérôme Lacour ${ }^{a, *}$
${ }^{\text {a }}$ Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
${ }^{\mathrm{b}}$ Laboratory of Crystallography, University of Geneva, Geneva, Switzerland.
${ }^{c}$ Department of Chemistry, University of Cambridge, Cambridge, UK.
Alejandro.Guarnieri@unige.ch

N-Sulfonyl-1,2,3-triazoles are known to decompose under metal catalyzed reaction conditions leading to electrophilic α-imino carbenes. ${ }^{[1]}$ These intermediates undergo many original processes, from cyclopropanations ${ }^{[2]}$ to ylide forming reactions and subsequent transformations. ${ }^{[3]}$

Herein, we report the $\mathrm{Rh}(\mathrm{II})$-catalyzed reaction of sulfonyl triazoles $\mathbf{1}$ with oxetanes $\mathbf{2} .{ }^{[4]}$ Depending on reaction conditions or substrate selection, 2-imino tetrahydrofurans 3, 13membered sulfonimidates 4 and 15-membered aza-macrocycles 5 are generated selectively via formal $[1+4],[5+4+4]$ and $[3+4+4+4]$ condensations of α-imino carbenes and oxetanes, respectively. Straightforward syntheses of spiro N-heterocycles such as indoline 6 and tetrahydroquinoline 7 are achieved by means of Buchwald-Hartwig and Pictet-Spengler cyclizations, completing effectively the product diversity.

[1] (a) B. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed., 2012, 51, 862. (b) H. M. L. Davies, J. S. Alford, Chem. Soc. Rev., 2014, 43, 5151.
[2] (a) S. Chuprakov, S. W. Kwok, L. Zhang, L. Lercher, V. V. Fokin, J. Am. Chem. Soc. 2009, 131, 18034. (b) N. Grimster, L. Zhang, V. V. Fokin, J. Am. Chem. Soc. 2010, 132, 2510.
[3] (a) F. Medina, C. Besnard, J. Lacour, Org. Lett. 2014, 16, 3232. (b) J. Pospech, R, Ferraccioli, H. Neumann, M. Beller, Chem. Asian J., 2015, 10, 2624.
[4] A. Guarnieri-Ibáñez, F. Medina, C. Besnard, S. L. Kidd, D. R. Spring, J. Lacour, Chem. Sci. 2017, 8, 5713.

